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PART- A
1. Examples for plane stress problem: Thin plate subjected to in-plane loads 
Examples for plane stress problem: A dam. (A prismatic long body subjected to body restrained longitudinal movements at the ends subjected constant load along its length).

2. The principle of minimum of total potential energy states that, of all possible kinematically admissible displacement fields, the actual solution to the problem is one which has minimum total potential energy.

3. In finite element method, Shape functions are, expressions in-terms of coordinates of a point within an elements, used to form an interpolation function to find the value of field variable or geometric variable with the help of nodal values of variables(Field or .geometric).

4.  Where E, A, L are Young’s modulus of the material, cross sectional area and length of bar element respectively. 
u1 and u2 are axial nodal displacements at node 1 and node 2 respectively. 
F1 and F2 are axial force applied at node 1 and node 2 respectively. 

5. In super parametric elements, number of nodes used to define geometry will be more than the number of nodes used for defining field variables (displacement, temperature etc). Whereas in subparametric elements, number of nodes used to defined geometry will be less than that of number of nodes used for defining field variables.

6. In case of curved lines or curved elements, shape functions are, first, expressed in terms of natural coordates (ξ, η) [parent element] and interpolation functions are formed for finding corresponding point mapped element (global coordinates). Similary, shape functions used to form an interpolation function for defining field variable (Displacement, temperature etc.). If shape functions used in defining geometry and field variables, the it is called isoparametric element. Subsequently, using these functions, method of arriving element properties such as stiffness matrix, load vector etc is called Isoparametric formulation.

7. A) Methods to solve governing differential equation
Weighted Residual methods
Collocation method
Subdomain method
Galerkin method
B) Methods based on Principle of total minimum potential energy
Ritz Method
Rayleigh-Ritz method

8. Displacement/Stiffness Method
Equilibrium/Force Method

9. Sway of tall buildings
Galloping of bridges
(Vibration of cantilever beams, spring-mass system – any two of student choice)

10. Jacobi method, Hessenberg reduction, QR method, Divide and conquer, (Any two)

PART- B
QUESTION 11
Let consider po/m uniformly distributed load is acting over entire span.
E is the Young’s modulus and I is moment of inertia of the beam of length L.
The following function for deflection is satisfying boundary conditions.
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(In Question, Particular trial function is not mentironed. Hence Polynomial function also can be considered if that satisfies boundary condition). 
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PART- C
[image: ]QUESTION 12(a)
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QUESTION 12(b)
Given structure is deficient structure. If students followed the steps marks may be awarded suitably

QUESTION 13(a)
8 noded isoparametric solid element (trilinear element)
[image: ][image: ]
The definition of ξ, η and ζ can be now be made more precise:
ξ goes from −1 on  face 1 4 8 5 to +1 on face 2 3 7 6
η goes from −1 on  face 1 2 6 5 to +1 on face 3 4 8 7
ζ goes from −1 on face  1 2 3 4 to +1 on face 5 6 7 8
The center of a face is the intersection of the two medians.
Thus coordinate of nodes are:
[image: ]
[image: ]
[image: ]
[image: ]

QUESTION 13(b)
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QUESTION 14(a)
Triangular Plate Bending Element
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QUESTION 14(b)
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STIFFNESS MATRIX OF THE SHELL ELEMENT
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« |s also called the 8 node “brick” element.
u= P+ Box+ iy + Biz + Py + Boye + Brex + Pyryz
v =By + Biox + By + Buaz + Biaxy + Brayz + Pisex + Breyz
w=Byy + Bigx + Broy + Paoz + Borxy + Brayz + Boazx + Pruxyz

« Solving for shape functions:

u=2N,u, U=ZN‘U' w=2N,w,

N=31+5HA M1 £E)
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The shape functions are
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These eight formulas can be summarized in a single expression:
=LA HEEM+ )1 + 280

where &, 7 and ¢+ denote the coordinates of the i node.

oy
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The element has a quadrilateral shape having eight
nodes as shown in Figure where the cxtemal top and
bottom surfaces of the clement are curved with linear
variation across the shell thickness. Figure 1b shows
the global Cartesian and local co-ordinate system at
any node i. The geomelry of the element can be nicely
represented by the natural coordinate system (& # and
() where the curvilinear coordinates (&) are in the
shell mid-surface while ¢ is linear coordinate in the
thickness direction. According to the isoparametric
formulation, these coordinates (& # and {) will vary
from -1 to +1 on the respective faces of the element.
The relationship(Eqn. 1) between the global Cartesian
coordinates (5, y and 2) at any point of the shell
clement with the curvilinear coordinates holds good
Thisis the geometry of an clement, which is described
by the coordinates of a set of points taken at the top
and bottom surfaces, where the line joining a pair of
points (f_and i ) is along the thickness direction
e

i.e,, normal to the mid-surface at the i node poiat.
The line joining the top and bottom points is the
normal vector(Fs) at the nodal point i
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Where N; are the quadratic serendipity shape
fanctions in (&) plane of the two-dimensional
clement.

Eqn. (1) may be rewritten in terms of mid-surface
nodal coordinates with the help of unit nodal
vectors(vs) along the thickness direction as,

B

Iy
TN G { (}+ SN (4 S {mzm} @

2, e

Where, I5,m5 and n are direction cosines of the nodal
vector(F'3), i.e. components of unit nodal vectors (vs),
v is the unit vector along (V3) direction,  is the
thickness atnode i
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Figure  Eight-noded quadsilateral degenerated shell
element in curvilinear co-ordinates
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The displacement field(Eqn.3) of a point within the
clement can be defined with the help of three mid
surface nodal translational displacement(u; v; and wy)
along the global Cartesian co-ordinates directions and
two rotational components 6, and 6, about the local
coordinates y* and x* directions.
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Whete, Iy and ny; are direction cosines of the nodal
vector(V3), i.e components of vy, Iy and ny are
direction cosines of the nodal vector(V3), ie

components of vz and (d) is nodal displacement
vector,

(d) =[ w1 viwi B 6 uzvi- - B Gsl' @
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The strain displacement relationship with Green-
Lagrange sirain of the clement in local co-ordinate
system(x'ytz) can be expressed as,
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E= )+ ) ®
After performing number of operations using equation
(2) and (3) we can write,

1= B+ ]G O
1= B+ B ©

Where, [By] and[B,] are strain-displacement
mairices with respect to linear and nonlinear strain
components respectively in local co-ordinate
system(x“y'z). The notmal strain 2 along z’
direction is neglected.
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A simplest possible triangular bending element has three comer nodes and three degrees of freedom per
nodes (w,6,,6,) as shown in Fig. 6.2.1.

(W3,8,3,8,3)

(W2,8,2,8,2)

(W;,8,,8,) 1 X
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As nine displacement degrees of freedom present in the element, we need a polynomial with nine
independent terms for defining, w(xy) . The displacement function is obtained from Pascal’s triangle by

choosing terms from lower order polynomials and gradually moving towards next higher order and so

on.
1

Thus, considering Pascal triangle, and in order to maintain geometric isotropy, we may consider the
displacement model in terms of the complete cubic polynomial as,

W(, )= G+ gxt @y + o+ oy + a5y + @+ o (- %)+ agy?
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Corresponding values for (8,6, )are,
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Putting the nodal displacements and rotations for the triangular plate element as shown in
the above equation, one can express following relations.
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Further, the curvature of the plate element can be written as
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Thus,

{2y =12 {a}
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Now the strain energy stored due to bending is

U =2 [P Mydxdy = L7 [Py ¢ [BY [DBIG~Hdddxdy
Hence the fm'ce vector is written as

(Fy= 7= (07T [} [ BT (D] [Blaxdy [ ~1{d} = [K1{d}

Thus, [£] is the stiffness matrix of the plate element and s given by
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Let & 7 be the curvilinear coordinates in the middle plane of the shell and ¢'a linear
coordinate in th thickness direcion. Ifwe furthr assume that £, 7, € vary between 1 and + 1 on
the respective faces of the clement, we can then write a relaionship between the cartsis
coordinates of any point of the shell and the curvilinear coordinates of the form

{j}:zu,(e,n)%{;ﬂ} +TH ()

where N, (5, ) are the shape functions of two-dimensi

Itis convenient o wrte the relaionship of cqn. sector®
containing the upper and the lower points (i.¢. 3 vector of length equal to the el thickness 1)
and the midsurface coordinaes.

We can rewrite eqn. a5
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The strains in terms of displacement derivatives are expressed as
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Stress - Strain Relationship
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‘The stress - strain relationship in cartesian coordinates is given by
{7}, =(P1{e},,
‘The sress strain relatonship in local coordinatesis given by
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‘The strain energy of the shell element is given by

vafE) (o) v
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where [T i of th size S x 6, (8] 6 x Sn, 06 x 6 and i the umberofnodes per slement

1fthe materil propertes are independent of  and if small rrors are accepiable, then the thickness
~ direction inegration can be done expliitly. In so doing one discards terms in [J] that depend on
Gunder the assumption that these terms are negligiblc if the clement s not sharply curved.
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- Assumed deflection curve

)= CsinZX
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= Strain energy
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